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    Chapter 16   

 Stress Responses During Ageing: Molecular Pathways 
Regulating Protein Homeostasis 

           Emmanouil     Kyriakakis    ,     Andrea     Princz    , and     Nektarios     Tavernarakis    

    Abstract 

   The ageing process is characterized by deterioration of physiological function accompanied by frailty 
and ageing-associated diseases. The most broadly and well-studied pathways infl uencing ageing are the 
insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies 
in diverse organisms have also delineated emerging pathways, which collectively or independently contrib-
ute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by 
maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this 
chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regula-
tion of longevity, placing emphasis on the cross talk between different response mechanisms and their 
systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these 
stress responses that may facilitate the development of innovative interventions targeting age-related 
pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.  

  Key words     Ageing  ,   Heat shock  ,   Immunity  ,   Infl ammasome  ,   Proteostasis  ,   Proteotoxic stress  ,   Unfolded 
protein response  

1      Introduction 

 Over the past years accumulating evidence suggest that stress- response 
and life-span regulation pathways share similar mechanisms [ 1 ,  2 ]. 
It is already known that accelerated ageing and ageing-associated 
diseases prevail when the organism loses the ability to adapt during 
stress caused by intrinsic or extrinsic burdens. Thus, the ability to 
cope with stress has a direct impact on physiological ageing. Impaired 
protein homeostasis and proteotoxic stress are considered a hallmark 
of ageing. Activation of stress- response pathways may ameliorate 
age-related proteotoxicity and induce life-span extension [ 3 – 5 ]. 
During ageing, the sophisticated mechanisms implicated in protein 
quality control, gradually deteriorate, leading to proteotoxicity and 
age-associated frailty. Such mechanisms include protein degrada-
tion-specifi c pathways, and networks for the proper folding and 
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traffi cking of nascent polypeptides. Adaptation of cellular proteostasis 
is mandatory in order to respond to loss of proteostatic control. 
Thus, identifying the players involved is essential towards developing 
strategies for effi ciently tackling age-related pathologies. The heat 
shock response (HSR) that regulates the cytoplasmic proteostasis 
and the unfolded protein response (UPR) that regulates proteostasis 
during endoplasmic reticulum (ER) stress are two well-characterized 
pathways that have evolved independently to ensure proper protein 
folding. Key molecules implicated in proteotoxic stress response 
pathways are listed in Table  1 . Perturbations in mitochondria may 
also initiate an UPR that activates transcription of nuclear-encoded 
mitochondrial chaperones for maintaining proper protein homeo-
stasis [ 6 ]. The peroxisomal quality control system has also been 
implicated [ 7 ], expanding the list of organelle-specifi c proteotoxic 
stress- response pathways. In this review, we focus on key stress 
response pathways that preserve proteostasis in the cytoplasm and 
the ER, the systemic effects exerted by these pathways, and their role 
during ageing.

2       The Heat Shock Response 

 When organisms encounter unfavorable environmental or intrinsic 
conditions, such as heat stress, oxidative stress or overexpression of 
aggregation-prone proteins, cell defensive mechanisms become 
activated. Impairment of these mechanisms due to mutations or 
advanced ageing, may lead to neurodegenerative and protein con-
formational diseases (e.g., Alzheimer’s disease, Parkinson’s disease, 
Huntington disease) [ 8 ,  9 ]. The heat shock response (HSR) is acti-
vated within seconds after exposure to stress. The master regulators 
of the HSR are the heat shock transcription factor family of pro-
teins. While there is only one heat shock transcription factor (HSF-1) 
in invertebrates, the mammalian genome encodes 4 (HSF-1-4) 
[ 10 ,  11 ]. In mammals HSF-1 regulates the HSR, whereas the other 
heat shock factors evolved to fulfi l distinct functions throughout 
development, stress, and ageing [ 12 – 16 ]. HSF-1 becomes active 
upon exposure to elevated temperature and induces the expression 
of heat shock proteins (HSP) (chaperones). Five different HSP 
families are defi ned by their molecular weight: HSP100, HSP90, 
HSP70, HSP60, and small HSP (sHSP) [ 1 ]. 

 The heat shock transcription factor family members share 
the same domain structure. The DNA binding domain (DBD) is 
located at the amino-terminus of the protein and comprises a helix-
turn- helix motif. Under normal conditions, interaction with Hsp90 
inhibits activation of HSFs [ 10 ,  17 ]. When cells experience heat 
stress, Hsp90 is recruited to unfolded and misfolded proteins,  leaving 
HSF-1 monomers in an intermediate, activation-ready state. As part 
of the activation process, the hydrophobic heptad repeat domain 
HR-A/B interacts with the HR-C domain, the  carboxy- terminal 
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domain of the protein. The active HSF-1  transcription factor is a 
trimer, formed by interactions between the HR-A/B domains [ 18 ] 
which localize in nuclear stress bodies (NSBs) [ 19 ]. In this form, 
HSF-1 is capable of binding specifi c DNA sequences, the heat shock 
elements (HSEs), which are located in the promoter region of heat 

   Table 1  
  Key molecules involved in heat shock and ER stress responses   

 Name  Function  Reference 

 ATF6  ER-membrane-bound ER-stress-sensor. Translocates to the Golgi, where 
it gets cleaved, forming a transcription factor responsible for the 
upregulation of ER chaperones 

 [ 67 ,  68 ] 

 PERK  ER-membrane-bound ER-stress-sensor. Responsible for repressing 
global protein synthesis via phosphorylation of the α subunit of eIF2α 

 [ 65 ,  66 ] 

 IRE-1  ER-membrane-bound ER-stress-sensor. Mediates transcriptional 
regulation during ER stress through XBP-1 

 [ 65 ] 

 XBP-1  A bZIP, ER-stress-regulated transcription factor. Upon ER stress the 
 xbp - 1  gene is alternatively spliced, generating the active transcription 
factor form 

 [ 63 ,  65 ] 

 eIF2α  mRNA translation initiation factor. Becomes phosphorylated during ER 
stress, attenuating protein synthesis 

 [ 65 ,  66 ] 

 GRP78  An ER chaperone and central regulator of ER stress. Interacts with and 
keeps the three ER-stress-sensors inactive during normal conditions. 
Dissociates upon ER stress, initiating UPR 

 [ 62 – 68 ] 

 CHOP  A stress-specifi c proapoptotic transcription factor. During ER stress it 
promotes apoptosis 

 [ 70 ,  71 ] 

 NLRP3  NLRP3 infl ammasome composes a multiprotein complex capable of 
sensing intrinsic dangers such as ER stress. NLRP3 activation is 
responsible for cytokine secretion and infl ammation 

 [ 90 – 93 ] 

 TXNIP  Links ER stress and infl ammation via NLRP3 activation. During severe 
ER stress TXNIP promotes apoptosis 

 [ 92 ,  93 ] 

 miR-211, 
miR-30c- 2-3p 

 miRNAs involved in ER stress adaptation  [ 77 – 82 ] 

 HSF-1  Master regulator of heat shock response gene transcription  [ 8 ,  10 ,  46 ] 

 HSP-90  Inhibits the function of HSF-1 under normal conditions  [ 10 ,  17 ] 

 HSP-70  Attenuates the heat shock response by binding to the active HSF-1  [ 29 ] 

 DAF-16/FoxO  Transcription factor mediating insulin/insulin-like growth factor 
signaling 

 [ 31 , 
 38 – 40 ] 

 SIRT-1  Deacetylase, regulating the heat shock response through acetylation of 
HSF-1 

 [ 27 ] 

 HSR-1  Constitutively expressed noncoding RNA, implicated in activating the 
heat shock response 

 [ 47 ,  48 ] 

 PHA-4/FoxA  Regulates the expression of HSP-90 in a cell-non-autonomous manner  [ 104 ] 
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shock genes. The transcription  activation domain (AD) at the car-
boxy end of HSF-1, is no longer repressed by intramolecular interac-
tion with the regulatory domain, and after proper posttranslational 
modifi cations, HSF-1 can activate expression of the heat shock 
genes [ 10 ]. Such posttranslational modifi cations include phos-
phorylation [ 20 – 24 ], sumoylation [ 25 ,  26 ], or acetylation [ 27 ]. 
While sumoylation and acetylation suppress the function of HSF-1, 
phosphorylation can exert a negative or positive impact on HSF-1 
activity. Phosphorylation of S303, S307 and S308 represses HSF-1 
activation, while phosphorylation of S230, S326 and S419 after 
exposure to stress triggers the formation of HSF-1 trimers. HSF-1 
possesses a phosphorylation dependent sumoylation motif (PDSM), 
where sumoylation of lysine 298 cannot occur without concomitant 
phosphorylation of serine 303 and 307. Acetylation of HSF-1 at 
residue K80 is required for the attenuation of the HSR. This event 
inhibits the DNA binding ability of HSF-1. Therefore, the extent 
of HSR depends on an acetylation–deacetylation cycle. Importantly, 
caloric restriction and the heat shock response act synergistically, and 
this cross talk requires the deacetylase SIRT1 [ 27 ,  28 ]. 

 Association of HSF-1 with the heat shock protein, HSP70, 
attenuates HSR [ 29 ]. This negative feedback loop maintains 
appropriate levels of heat shock proteins during the HSR. Two 
regulators of SIRT1, AROS and DBC1 also modulate HSR. AROS 
positively regulates the deacetlyase activity of SIRT1, while DBC1 
suppresses it. These two regulators infl uence transcription of hsp70 
genes through recruitment of HSF-1 to the hsp70 promoter, and 
altering the acetylation status of HSF-1. This regulation may occur 
in a SIRT1-independent fashion, perhaps via alternative deacety-
lases [ 30 ]. 

 Studies on the nematode  Caenorhabditis elegans  have contrib-
uted to a better understanding of the HSR, and its age-related 
decline. Recent studies have shown that proteostasis deterioration is 
coupled with the end of the reproductive period in  C. elegans . 
Proteostasis collapses rapidly at this stage and declines gradually for 
the remaining duration of adult life. Overexpression of HSF-1 or 
DAF-16/FoxO reverses this rapid reduction, providing longer and 
healthier life span [ 31 ]. Maintenance of proteostasis has been linked 
to the germ line stem cells (GSC) and reproductive status. Sterile 
animals better preserve proteostasis in different somatic tissues, and 
this depends on several, nonredundant signaling pathways that 
involve HSF-1, DAF-16, DAF-12, DAF-9, DAF-36, NHR-80, and 
PHA-4 [ 32 ]. Therefore, without early GSC arrest,  C. elegans  
cannot maintain the proper somatic proteostasis, leading to early 
death. Inhibition of oocyte production with the chemical 5-fl uoro-
2- deoxyuridine (FUdR) also improves the proteostasis and protects 
against stress. This effect is in part HSF-1, DAF-16, and DAF-12 
independent [ 33 ]. 
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 Perturbation of HSF-1 function as well as the amount of 
 chaperones found in the cell leads to changes in life span. 
Overexpression of HSF-1 or chaperone quantity elevation promotes 
long life [ 34 – 36 ], by better maintaining global proteostasis, while 
loss of HSF-1 results in premature ageing [ 37 ], and increased pro-
tein aggregate formation in cells. HSF-1 has also been implicated in 
life span extension by low insulin/IGF-1 signaling [ 38 – 40 ]. 
However, HSR and life span regulation do not always correlate. 
The  C. elegans gtr - 1  (a G-protein coupled receptor) gene is required 
for the expression of HS genes, but it has no infl uence on life span 
[ 41 ]. Thus, although HSF-1 and proper HSR is essential for normal 
life span, there are exceptions where the HSR and the regulation of 
longevity pathways can be uncoupled. 

 Although HSF-1 is the master regulator of HSR, there are spe-
cifi c cases where other mediators are involved. In addition to 
HSF-1 (mammals) or HSF-3 (avians) activation during HSR, 
HSF-2 also becomes activated. Moreover, HSF-2 induces the 
expression of HS genes through increased activation of HSF-1 or 
HSF-3. Animals carrying HSF-2 mutations are more susceptible to 
mild heat shock, demonstrating the importance of HSF-2 in the 
regulation of proteostasis [ 42 ]. The primary hippocampal neurons 
of the neonatal rat embryos do not express HSF-1; therefore, they 
are incapable of responding to heat stress, while they express 
HSF-2 [ 43 ]. Mitotic cells are also hypersensitive to elevated tem-
perature and proteotoxicity due to reduced binding and transacti-
vating capacity of HSF-1 during the cell cycle. HSF-2 functions as 
an epigenetic regulator in mitotic cells. HSF-2 was shown to bind 
hundreds of loci or localize to condensed chromatin in mitotic and 
meiotic cells, respectively, driving transcription [ 44 ]. 

 HSF-1 also plays an essential role in the proliferation of T cells. 
HSF-1 (−/−) T cells are unable to respond properly to immune 
system activating signals, and they exhibit cell cycle defects even at 
normal temperatures. In these cells the amount of cyclin E and 
cyclin A is reduced, without a large difference in their transcription 
[ 45 ]. Either HSF-1 is required for the transcription of regulatory 
genes which mediate translation of cyclin E and A proteins or 
HSF-1 itself is needed for the proper translation of these genes. 
Thus, investigating the tissue specifi c effects of HSF-1 and HSR 
could provide new insights into their regulation. 

 Although these fi ndings provide a better understanding of the 
mechanisms and the functions of the HSR, several questions still 
remain. How stress stimuli are sensed, resulting in HSF-1  activation 
remains to be elucidated. Four models that are not mutually exclu-
sive have been proposed, relevant to the triggering of the heat shock 
response [ 46 ]. The fi rst model involves the HSP90 chaperone, as 
already described above. The second model suggests that a ribonu-
cleoprotein complex consisting of the translation elongation factor 
eEF1A and a noncoding, constitutively expressed RNA molecule, 
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HSR-1 (heat shock RNA-1) catalyzes the HSF-1 trimer formation. 
Downregulation of HSR-1 by RNAi makes cells more susceptible to 
heat stress. Furthermore, ectopic expression of eEF1A and HSR-1 
results in HSF-1 trimer formation [ 47 ]. In this case RNA molecules 
serve as sensors most probably via conformational changes [ 48 ]. 
A third model suggests that HSF-1 itself is capable of sensing 
changes in ambient temperature, transforming into the active form. 
This could explain the fact that in about 1 min after heat shock the 
hsp70 promoter is saturated with active HSF-1 trimers. A motif 
including disulfi de bonds between two cysteine residues in the DBD 
domain and neighboring aromatic amino acids may serve as an 
intrinsic sensor on HSF-1 [ 49 ,  50 ]. The fourth model involves a 
nervous system controlled HSR. In  C. elegans  HSR is under the 
control of thermosensory neurons which regulate and coordinate 
the response in the whole organism (discussed below in more detail) 
[ 51 ]. Despite accumulating data, we are just starting to understand 
the tissue specifi c and cell-non- autonomous roles of HSR. 
Importantly, HSF-1 is not only active under stress conditions, but is 
an essential transcription factor also during development [ 52 – 57 ]. 
Moreover, HSF-1 is required for the survival of cancer cells [ 58 ]. 
This effect may be p53-dependent [ 59 ]. Therefore, HSF-1 may 
interact with p53 rendering the effi ciency of cancer treatments 
dependent on the genetic background of cells [ 60 ,  61 ]. Thus, in 
addition to understanding fundamental cellular processes and stress 
response pathways, delineating the precise regulation of proteostasis 
through HSR could facilitate the development of new drugs against 
age-associated diseases.  

3    Endoplasmic Reticulum Stress and the Unfolded Protein Response 

 The ER is a complex organelle performing various cellular functions. 
It is essential for the proper folding and post-translational modifi ca-
tion of secreted and membrane-bound proteins and it also serves as a 
calcium storage organelle among other functions. Perturbations of 
ER homeostasis caused by physiological or pathological conditions 
result in ER stress, a condition characterized by overload of misfolded 
proteins. In response to ER stress, cells mount the unfolded protein 
response (UPR) to restore normal ER function. 

  UPR is mediated by an elaborate signaling pathway that functions 
to ameliorate the accumulation of unfolded proteins in the ER. ER 
proteostasis is achieved either by proteasomal degradation of aber-
rant polypeptides in a process termed endoplasmic reticulum associ-
ated degradation (ERAD), by attenuating de novo protein synthesis 
or by inducing expression of chaperones, which are vital for proper 
protein folding [ 62 – 64 ]. The UPR is orchestrated by evolutionary 
conserved signaling events composing three consecutive phases 

3.1  Canonical 
and Noncanonical ER 
Stress-Induced 
Signaling Pathways
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with different effector functions, namely,  adaptation, alarm, and 
apoptosis. These phases are directed by three major ER stress sen-
sors, the PKR-like ER kinase (PERK), the activating transcription 
factor 6 (ATF6) and the inositol requiring enzyme-1 (IRE-1). 
Accumulation of misfolded proteins in the ER triggers ER stress. As 
a consequence, the otherwise ER-stress-sensor- bound GRP78 
chaperone dissociates from the three ER transmembrane receptors, 
launching UPR [ 64 ,  65 ]. During adaptation, the tripartite signal-
ing cascade facilitates reestablishing normal proteostasis. Protein 
load in the ER is moderated by translation attenuation, effected by 
the PERK-mediated phosphorylation of eukaryotic initiation factor 
2 (eIF2α) [ 66 ]. On the other UPR arm, ATF6 is subjected to pro-
teolytic cleavage after translocation to the Golgi apparatus, forming 
a transcription factor responsible for the upregulation of ER chap-
erones such as GRP78 and GRP94 [ 67 ,  68 ]. Activation of IRE-1 
facilitates XBP-1 activation, which serves as a transcription factor of 
genes involved in proteostasis [ 65 ]. In addition, the IRE-1 branch 
of the UPR may also induce apoptosis by causing endonucleolytic 
decay of ER-localized mRNAs during stress [ 69 ]. When adaptive 
mechanisms fail to compensate in the face of protracted or excessive 
ER stress, apoptosis is induced to protect the organisms by elimi-
nating compromised cells. The proapoptotic transcription factor 
C/EBP homologous protein (CHOP), which blocks the expres-
sion of antiapoptotic protein BCL-2, plays a central role in these 
apoptotic mechanisms [ 70 ,  71 ]. ER stress and UPR pathways have 
also been implicated in the pathogenesis of diseases associated with 
stress responses. In addition to biochemical approaches [ 71 ,  72 ], 
novel tools for in vivo monitoring of ER stress uncover new aspects 
of the pathophysiology of ageing-associated diseases [ 73 – 76 ]. 

 Apart from the extensively discussed canonical UPR pathways, 
accumulating evidence suggests that miRNAs are important deter-
minants of ER stress responses [ 77 ,  78 ]. However, their role is 
only starting to be dissected. Intriguingly, UPR may induce or sup-
press miRNAs, some of which exerting pro-adaptive whereas oth-
ers pro-apoptotic effects. miRNAs have been suggested to function 
as UPR rheostats, coupling different components of the response 
and regulating ER stress-induced apoptosis [ 79 – 82 ]. miR-211 has 
been identifi ed as a prosurvival miRNA which serves as a switch 
between adaptation and the apoptotic phase of the UPR. Indeed, 
PERK-induced miRNA expression prolongs the adaptation phase 
by attenuating the expression of  chop , thus delaying ER stress 
induced apoptosis [ 79 ]. A mechanism which converges two of the 
three UPR components has also been identifi ed. This mechanism 
involves the PERK-mediated induction of a miRNA (miR-30c- 
2-3p), responsible for XBP-1 expression [ 80 ]. Nevertheless, the 
transition from adaptation towards apoptosis and the contribution 
of miRNAs to UPR dependent mechanisms are only now starting 
to be appreciated. 
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 During ageing UPR components deteriorate, shifting the bal-
ance towards a more apoptotic pathway [ 83 ,  84 ]. In aged mouse 
livers, misfolded proteins accumulate as a consequence of decreased 
enzymatic activities of the ER chaperones PDI and GRP78 [ 85 ]. 
Additionally, PERK mRNA levels are signifi cantly reduced in the 
hippocampus of aged rats compared to younger animals, yet 
GADD34 and CHOP expression levels are induced in the cortical 
tissue of aged mice and cells, indicating a shift from a protective 
adaptive response towards an apoptosis-competent response [ 83 , 
 84 ,  86 ]. Hence, aged animal cells are more vulnerable to apoptotic 
cell death as a consequence of limited ER stress resistance. 

 Intriguingly, mild stress may exert benefi cial effects, promot-
ing longevity through adaptation, whereas severe ER stress may 
accelerate ageing and aggravate age-associated diseases. This phe-
nomenon, termed hormesis, has attracted much attention, and 
UPR exhibits characteristics of a hormetic response. ER stress 
intensity may range between prolonged, damaging ER stress and 
mild, benefi cial ER stress. Given that ER stress adaptation capacity 
declines during ageing, a slight induction of UPR may be an effec-
tive strategy to alleviate age-associated maladies and augment life 
span. This concept is supported by observations in β cells, which 
survive better and maintain physiological activity when UPR is 
restored or maintained at low levels, a mechanism that protects 
mice from type 1 diabetes [ 87 ].  

  As discussed earlier, UPR pathways sense different grades of pro-
teotoxic stress and elicit different responses accordingly. However, 
the precise mechanisms leading to apoptotic cell death remain 
largely elusive. Noncanonical pathways mediated by miRNAs are 
partially responsible for the transition from the adaptation phase 
towards a pro-apoptotic phase. Additional noncanonical UPR path-
ways have been implicated in the regulation of UPR and the con-
version of adaptation to terminal UPR. Some of these networks link 
stress signaling mechanisms to immune responses and infl amma-
tion. In  C. elegans  the apoptotic receptor CED-1 activates a net-
work of PQN/ABU proteins which are involved in the noncanonical 
UPR pathway and immune response activation, enhancing animal 
survival [ 88 ]. This study provides evidence of how an apoptosis 
receptor (CED-1), evokes UPR during ER stress, preventing apop-
tosis. In another paradigm, neuronal expression of an  octopamine 
G protein-coupled catecholamine receptor OCTR-1, limits innate 
immunity by downregulating PQN/ABU proteins and the p38 
MAPK in non-neuronal cells [ 89 ]. These fi ndings suggest that the 
nervous system regulates and links UPR with immune responses 
during exogenous threats in a systemic manner. 

 Infl ammation, one of the fi rst immune system responses to 
infection, has been linked to uncontrolled ER stress in infl ammatory 
pathologies such as neurodegenerative diseases and type 2 diabetes. 

3.2  Cross Talk 
Between ER Stress 
and Infl ammation-
Dependent Networks: 
From Adaptation 
to Death
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The NLRP3 infl ammasome has been implicated in sensing intrinsic 
ER stress, causing subsequent release of the highly pro- infl ammatory 
cytokine IL-1β [ 90 ]. In astrocytes the link between ER stress and 
infl ammation is attributed to the uncoupling protein 2 (UCP2). 
Loss of UCP2 induces ER stress and exacerbates NLRP3 infl amma-
some activation in astrocytes of the mouse midbrain [ 91 ]. Although 
the association of severe ER stress and infl ammation has long been 
identifi ed, the molecular connections between these two responses 
remain unknown. Thioredoxin- interacting protein (TXNIP) appears 
to tightly link irredeemable ER stress and NLRP3 infl ammasome 
activation, leading to β cell death [ 92 ,  93 ]. Thus, TXNIP has been 
suggested to play an important role in switching from an adaptive 
response to the apoptotic response induced by severe ER stress. In 
conclusion, signifi cant advances have been made in the past years 
towards clarifying the relationship between ER stress and infl amma-
tion and the transition between the different UPR phases. Further 
studies hold promise of identifying intervention targets to effi ciently 
battle infl ammatory diseases.   

4    Systemic Effects in the Regulation of Stress Responses and Ageing 

 The ability of an organism to cope with endogenous and exogenous 
threats has a direct impact on physiology and healthy ageing. 
Organismal resistance against such hazards is achieved through 
physiological pathways that infl uence tissue communication, by cou-
pling both cell-intrinsic and systemic events. To investigate the infl u-
ence of such systemic effects on ageing and health span, whole 
animal studies are required. The genetic model organisms,  C. elegans  
and  Drosophila , have proven of great value and have contributed to 
shed ample light on cell-non-autonomous effects that regulate age-
ing. It is long known that dietary restriction and the insulin/insulin-
like growth factor-like signaling pathway regulate organismal life 
span and mitigate or lessen age-related diseases. Nevertheless, the 
importance of hormonal and endocrine signals has not been fully 
appreciated. 

 In  C. elegans , increased neuronal activity induced by dietary 
restriction contributes to life span extension. Alterations of 
 nutritional status induced by caloric restriction activate  skn - 1  in a 
pair of neurons (ASI neurons) in the head of the animal. This in turn 
leads to induced metabolic activity of non-neuronal body tissue and 
ultimately promotes longevity in an endocrine fashion [ 94 ]. Similarly, 
excision of insulin-like-peptide-producing cells from the  Drosophila  
brain not only increases glucose levels, resembling effects in diabetic 
patients, but also induces stress resistance and life span extension 
due to systemic effects [ 95 ]. 

 Similar genetic studies revealed that alterations in organismal 
life span and stress resistance driven by the germ lineage are also 
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due to endocrine effects [ 32 ,  96 ,  97 ]. Indeed, genotoxic stress in 
germ cells enhances systemic proteotoxic stress resistance. Specifi c 
extrinsic and intrinsic insults targeting the DNA of the germ cells 
may transiently activate innate immune responses, which in return 
trigger the ubiquitin–proteasome system (UPS) in somatic tissues. 
Somatic stress resistance and proteostasis are enhanced by immunity- 
related peptides secreted upon ERK MAP kinase activation in com-
promised germ cells [ 97 ]. Thus, protein homeostasis responses may 
be mediated by systemic effects. Similarly, ER and mitochondrial 
UPR likely exert systemic effects that have direct impact on longev-
ity and age-related maladies. Although the consequences of mito-
chondrial function in longevity are long known [ 98 ,  99 ], the 
systemic effects exerted by mitochondria remain largely enigmatic. 
Neuronal or muscle specifi c ablation of  cco -1 induces mitochondrial 
UPR in the intestine by a so far unknown mechanism, infl uencing 
the survival of the animal [ 100 ]. Systemic effects exerted by UPR 
have also been recently demonstrated, further to UPR initiated by 
cell non-autonomous signals [ 101 ,  102 ]. OCTR-1 expressing neu-
rons modulate ER protein homeostasis in the gut during adulthood 
via regulation of the IRE-1/XBP-1 arm of the tripartite UPR sig-
naling cascade [ 102 ]. In addition, neurotransmitters released upon 
ER UPR initiated by ER stress in a cell-autonomous fashion activate 
ER UPR in distal cells [ 101 ]. This activation confers protection 
against ER stress and ultimately promotes organismal longevity. 
Collectively, these fi ndings highlight the importance of UPR 
 coordination between distal cells towards maintaining protein 
homeostasis and prolonging ageing. 

 Analogous mechanisms also coordinate HSR pathways. Two 
recent studies in  C. elegans  demonstrate cell-non-autonomous 
control of the HSR. A genome-wide RNAi screen identifi ed 7 pos-
itive and 59 negative novel modifi ers of the HSR. These modifi ers 
act at particular steps during the HSR. Interestingly, although neg-
ative regulators show tissue specifi city, positive regulators are 
expressed throughout the animal [ 103 ]. More precisely, overex-
pression of  hsp - 90  in the muscle leads to expression of the protein 
in tissues that normally do not express  hsp - 90 , such as the intestine. 
Moreover, elevated expression of  hsp - 90  in the intestine or neurons 
reduces the severity of muscle degeneration in  unc - 54  mutants. 
These effects are regulated by the PHA-4 FoxA transcription factor 
[ 104 ]. FoxA-mediated expression of HSP90 maintains organismal 
proteostasis in a neuronal-independent cell-non-autonomous fash-
ion providing, a global response towards preventing impairment of 
organismal health, and augmenting survival. 

 In  C. elegans , the AFD thermosensory neurons coordinate 
organismal HSR induction. Regulation of HSR is due to neuroen-
docrine effects, since mutations affecting AFD neurons inhibit 
HSR in distal tissues [ 51 ]. AFD defi cient animals are still capable 
of moderating protein aggregation by HSF-1-derived chaperone 
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expression, indicating that genes not involved in ambient 
 temperature sensation are required for the expression of heat shock 
genes [ 105 ]. One candidate for this role is  gtr - 1 , a G-protein cou-
pled receptor not expressed in AFD neurons, but in other neurons 
necessary for the HSR [ 41 ]. Therefore, upregulation of HSF-1- 
regulated genes is also possible in a thermosensory neuron- 
independent manner. 

 These fi ndings indicate that neuroendocrine signals mediate 
proteotoxic stress defense at the level of the whole organism. 
Indeed, recent studies have revealed that hypothalamic mitofusin 2 
(MFN2) regulates whole body energy balance, by modulating ER/
mitochondrial homeostasis and function in pro- opiomelanocortin 
(POMC) neurons [ 106 ]. Therefore, the nervous system rapidly 
responds to a variety of stimuli and releases warning signals to sen-
sitize distal cells and tissues against threatening events.  

5    Conclusions 

 Protein homeostasis is a fundamental prerequisite for cell survival. 
Subcellular compartment-specifi c stress responses are important 
determinants of cell proteostasis and crucial for organismal sur-
vival, health span, and life span (Fig.  1 ). Various age-associated 
diseases are caused by the deregulation of proteostasis [ 4 ,  15 ]. 
Protein aggregate deposition has been implicated in neurodegen-
erative  disorders. Alzheimer’s disease, Parkinson’s disease, and 
Huntington’s disease are some of the late-onset pathologies asso-
ciated with protein malformation and impaired protein aggregate 
clearance mechanisms [ 107 ].  

 Numerous studies in cell cultures and animal models indicate 
that the ability of cells to respond effi ciently to detrimental envi-
ronmental effects declines with age [ 108 ]. In vitro [ 109 ,  110 ] and 
in vivo [ 111 – 114 ] fi ndings have revealed that the amount of 
HSP70 proteins in response to heat shock decrease during ageing. 
However, HSF-1 protein levels remain constant throughout life 
span. Instead, the DNA-binding ability of HSF-1 is impaired in 
aged rat tissues, compared to young controls [ 115 ,  116 ]. 
Overexpression of DNAJ chaperones suppresses the cytotoxic 
effects exerted by mutant huntingtin aggregates in cells [ 117 ] and 
fl ies [ 118 ], and improves mental skills of mouse models of 
Huntington’s disease [ 119 ]. By contrast, HSR is blocked by accu-
mulation of polyglutamine-expanded huntingtin protein [ 120 , 
 121 ]. Surprisingly, the most affected HSF-1 target genes are 
involved in cytoskeletal binding, focal adhesion and GTPase activ-
ity, rather than in proteostasis [ 121 ]. Overexpression of the 
HSP70 interacting protein (Hip) increases the effi ciency of HSP70 
binding to its substrates leading to reduced accumulation of the 
polyglutamine- expanded androgen receptor, improving the 
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symptoms of spinobulbar muscular atrophy [ 122 ]. Another activator 
of HSP70, ML346, a barbituric acid scaffold acts through HSF-1, 
FOXO, and Nrf-2 to induce chaperone expression and proper 
 protein folding in conformational diseases [ 123 ]. These new reg-
ulatory molecules comprise attractive intervention targets against 
diseases associated with aberrant HSR. 

 Additionally, the cross talk between ER stress and infl amma-
tion has been implicated in obesity and metabolic dysfunction 
[ 124 ]. Metabolic diseases such as diabetes and obesity are associ-
ated with proteotoxic stress and more specifi cally with the UPR 
network [ 125 ]. For example, the insulin secreting β-cells are 
more susceptible to ER stress induced apoptosis when the PERK 
component of the UPR is compromised, resulting in the manifes-
tation of diabetes [ 126 ,  127 ]. Interestingly, administration of 

  Fig. 1    Proteotoxic stress response mechanisms. Cell-autonomous and cell-non-autonomous stress response 
pathways triggered under conditions of cellular stress. On the upper left part, signals from the stressed ER are 
depicted, promoting cellular adaptation through eIF-2α phosphorylation and regulation of miRNAs. Switching 
from adaptation to apoptosis is part of the noncanonical pathways, involving infl ammasome activation and 
IL-1β secretion. Additional organelle-specifi c response pathways important in maintaining proteostasis, 
including the heat shock response and the mitochondrial and peroxisomal UPR are shown. Collectively, these 
stress response pathways have been implicated in the regulation of longevity, and in the pathogenesis of 
ageing-related disorders via endocrine effects exerted mainly by neuron-released peptides       
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tauroursodeoxycholic acid, an ER stress mitigator, confers protection 
against type 1 diabetes, through UPR regulation and β-cell pres-
ervation [ 87 ]. In metazoans, compounds that bind and stain 
amyloid-β deposits and enhance proteostasis also promote lon-
gevity [ 128 ]. Such small compounds, which specifi cally regulate 
UPR pathways, may be effective in interventions against diseases 
associated with aberrant HSR. 

 Stress responses and infl ammation also play crucial roles in the 
development of tumors. Cancer cells are characterized by altera-
tions in metabolic activity some of which resemble the metabolic 
response of non-transformed cells [ 129 ]. This metabolic activity 
directly depends on the tissue microenvironment; however, the 
role of paracrine and endocrine signals is not well understood. 
Given that proliferating tumor cells require increased protein fold-
ing, manipulation of proteostasis and stress-response pathways 
may provide a promising therapeutic strategy against cancer. 
Apoptosis could be triggered in cancer cells by inducing severe 
stress. Alternatively cancer cells could be mitigated by completely 
abrogating and limiting stress responses, impairing adaptation to 
stressful conditions. To this end inhibitors or small molecules tar-
geting UPR pathways have been developed to ameliorate protein 
misfolding diseases or as potential anticancer drugs with some 
promising results [ 130 – 134 ]. 

 Stem cells exhibit high proteasome activity allowing them to 
cope with proteotoxic stress and avoid replicative senescence. 
Recent studies have revealed novel players of proteostasis in human 
embryonic stem cells (hESCs) that link longevity and stress resis-
tance. PSMD1 has been shown to effi ciently promote proteostasis 
in hESCs [ 135 ]. α-Synuclein also appears to play an important role 
during pluripotent stem cell (iPS) differentiation, involving ER 
stress response pathways [ 136 ]. Furthermore, ER stress plays 
important role in epithelial stemness, through UPR, in a PERK 
dependent manner [ 137 ]. HIF-2α also contributes to the mainte-
nance of human hematopoietic stem/progenitor cell (HSPCs) and 
in the survival of human acute myeloid leukemia cells by protecting 
against ER stress-induced apoptosis [ 138 ]. Given that stem cells are 
required for tissue regeneration, and ageing is associated with decay 
in regeneration potential, proteostasis may promote longevity by 
maintaining the normal function of stem cells. 

 The signaling pathways described here collectively restore or 
maintain normal protein homeostasis levels through reducing 
demand and limiting protein aggregation, by enhancing proper 
folding and therefore safeguarding against proteostasis-related dis-
eases. Mild stressors could potentially be used to precondition cells 
to more effectively respond to metabolic stress and ageing. 
Therefore, preadaptation against upcoming stress insults could 
provide an effi cient strategy for an organism to better cope against 
life-threatening hazards. To this end it is crucial to further 
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